

NTEGRATED SINK ENHANCEMENT ASSESSMENT

Spatially explicit analysis of bioenergy systems

Sylvain Leduc, LUT

Jinyue Jan, LUT

Michael Obersteiner, IIASA

Keywan Riahi, IIASA

Florian Kraxner, IIASA

Issues

- Economies of Scale in Production
- Economic Geography and Transportation
- Polyproduction justifies smaller scales

Process

Costs

Capital required	Description	M€ ₂₀₀₃ .			
Engineering Fee	10% of PPC	18.475			
Process Contingency (Using cont. listed)	2.345% of PPC	4.332			
General plant facilities	10% PPC	18.475			
Project Contingency	15% of (PPC +General plant facilities)	30.484			
Total Plant Cost (TPC)		256.518			
Adjustment for Interest and Inflation	0.34% PPC	0.6282			
Total Plant Investment (TPI)		257			
Prepaid Royalties	0.5% of PPC	0.924			
Start-up Costs	2.7% TPI	6.943			
Spare Parts	0.5% of TPC	1.286			
Working Capital		12.857			
Land, 200 Acres	200 Acres at 6,500 Euro / Acre	1.3			
Total Capital Requirement (TCR)					

:—

Costs

Operating and maintenance	Description	M€ ₂₀₀₃ .
Wood		61.783
Operator Labor	3% of TPI	7.714
Supervision and Clerical Labor	30% of O&M Labor	2.314
Maintenance Costs	2.2% of TPC	5.643
Insurance and Local Taxes	2% of TPC	5.130
Operating Royalties	1% of Wood Cost	0.6178
Miscellaneous Operating Costs	10% of O&M Labor	0.077
Net Operating Cost		88.424

:—

Scenarios

Scenario I:

Optimize Power Plant Location and Size Given Heat Demand function Given constant MeOH Price Given constant electricity price

Poplar Plantations from EPIC

Gas Filling Stations

- Time of day effect
- Weekend/weekday effect
- Seasonal effects
- Time varying volatility

Heat demand vs. outside temperature

<

Summary of the time-series models

Description of the model	Abbreviation
Giobal models	
no temperature	
ARMA on HD	M1
ARMA on log HD	M2
SARMA on HD	M3
with temperature	
ARMAX on HD	M4
ARMAX on log HD	M5
SARMAX on HD	M6
SARIMAX on HD	M7
non-linear SARIMAX on HD	
with structural temperature of lag 0	M8
non-linear SARIMAX on HD	
with structural temperature of lags 0 and 1	M9
SARIMAX on log HD	M10
non-linear SARIMAX on log HD	
with structural temperature of lag 0	M11
non-linear SARIMAX on log HD	
with structural temperature of lags 0 and 1	M12
Separable models	
no temperature	
ARMA on HD	M13
ARMA on log HD	M14
ARIMA on HD	M15
ARIMA on log HD	M16
time varving coefficient model on HD	M17
with temperature	
ARMAX on HD	M18
ARMAX on log HD	M19
ARIMAX on HD	M20
ARIMAX on log HD	M21
non-linear ARIMAX on HD	
with structural temperature of lag 0	M22
non-linear APMAX on HD	IVIZZ
with structural temperature of lag 0	MOS
time varving coefficient model on HD	M24
	11/24

1-week ahead forecasts of heat demand by M9 (17-23 April)

S П С

Hour

Potential Locations (incl. heat demand)

I I N S E

4

Optimal Locations&Size

Longitude Latit	Latitude	Size	Efficiency	Economical	Interest	Load	Methanol	Area	Gas
	Latitude	(MW _{biomass})		lifetime	rate	hours	sold (m3)	(ha)	stations
14	48,19	240,4	0,45	20	0,1	7800	192478	39675	386
14,27	46,69	50,0	0,4	20	0,1	7200	32850	9100	66

Scenarios

Scenario II:

Find Optimal Size&Location
10% Car Fleet,
25ha Plantation / 100ha

Plant Size

Future Work

- Ligno-cellolosic Ethanol production
- DME
- Fischer-Tropsch Diesel
- Global Application
- Stochastic Investment Calculus (Real Options Deliverable)